Analytika[®] spol. s r.o., Ke Klíčovu 2a/816, 190 00 Praha 9

Primary methods Determination of the analyte mass concentration

in single element water calibration solutions

Martin Vlasák, Zuzana Luxemburková, Václav Sychra www.analytika.net; sales@analytika.net

Gravimetric preparation of water calibration solutions and analyte mass concentration determination

Sodium calibration solution in 2% (v/v) nitric acid (Kragten spreadsheet)

Sodium std. solution in 2% nitric acid	Average sample weight	Volume of the sample analysed (std. solution)	Gravimetric factor	Repeatability of the analysis
	a [g]	b [ml]	c [1]	repeatability [1]
Value	0,30913	10,01	0,3237035	1
Uncertainty	0,00007	0,00087	0,000068	0,000388
a [g]	0,30920	0,30913	0,30913	0,30913
b [ml]	10,01	10,01087	10,01	10,01
c [1]	0,3237035	0,3237035	0,3237103	0,3237035
repeatability [1]	1	1	1	1,000388
Mass conc. (γ(u)), [mg/l]	9998,8	9995,7	9996,8	10000,4
γ(average) - γ(u), [mg/l]	-2,264	0,869	-0,209	-3,882
(γ(av.) - γ(u))2, [mg/l]2	5,124	0,755	0,044	15,073
Contribution to the total u	24,4%	3,6%	0,2%	71,8%
Σ(γ(av.) - γ(u))2, [mg/l]2	20,99537			100,00%
Total uncertainty u, [mg/l]	4,6	Average mass concentration	9996,6	[mg/l]
Expanded comb. U, [mg/l]	9,2	U, <mark>k=</mark> 2	9,2	[mg/l]
Repeatability of the method	0,12%	Ref. mass conecntration	10000,0	[mg/l]
Recovery (rel.)	99,97%	U, <mark>k=</mark> 2	20,0	[mg/l]
Recovery uncertainty (rel.)	0,11%	u	10,0	[mg/l]
γ(average) - γ(ref.)	3,4	[mg/l]	Metrological con	mpatibility [mg/l]
u (γ(average) - γ(ref.))	11,0	[mg/l]	γ(average) - γ(ref.)	U (γ(average) - γ(ref.))
U (γ(average) - γ(ref.))	22,0	[mg/l]	3,4	22,0

Antimony calibration solution in 1%HF+5%HNO₃ (v/v)

	Antimony std. solution in 1% hydrofluoric + 5% nitric acid	Weight of potassium bromate for the volumetric solution	Purity of potassium bromate for the vol. solution preparation	Molar mass of potassium bromate	Volume of potassium bromate volumetric solution	Volume of the sample analysed (antimony std. solution)	Volume of potassium bromate vol. solution during the titration	Molar mass of antimony	Repeatability of the analysis	
		a [g]	P [1]	b [g/mol]	c [ml]	d [ml]	e [ml]	f [g/mol]	repeatability	
	Value	1,66992	1	167,0005	1000	99,94	27,41	121,76	1	
	Uncertainty	0,00007	0,000115	0,000779	0,1915	0,0112	0,0062	0,000577	0,000413	
	а	1,66999	1,66992	1,66992	1,66992	1,66992	1,66992	1,66992	1,66992	
	Р	1	1,000115	1	1	1	1	1	1	
	b	167,0005	167,0005	167,001279	167,0005	167,0005	167,0005	167,0005	167,0005	
	с	1000	1000	1000	1000,1915	1000	1000	1000	1000	
	d	99,94	99,94	99,94	99,94	99,9512	99,94	99,94	99,94	
	е	27,41	27,41	27,41	27,41	27,41	27,41245	27,41	27,41	
	f	121,76	121,76	121,76	121,76	121,76	121,76	121,760577	121,76	
	repeatability	1	1	1	1	1	1	1	1,000413	
	Mass conc. (γ(u)), [mg/l]	1001,69	1001,76	1001,64	1001,45	1001,53	1001,87	1001,65	1002,06	
	γ(average) - γ(u), [mg/l]	-0,042	-0,116	0,005	0,192	0,112	-0,227	-0,005	-0,414	
	(γ(av.) - γ(u))2, [mg/l]2	0,002	0,013	0,000	0,037	0,013	0,051	0,000	0,171	
	Contribution to the total u	0,6%	4,7%	0,0%	12,8%	4,4%	17,9%	0,0%	59,7%	
	Σ(γ(av.) - γ(u))2, [mg/l]2	0,287							100,0%	
	Total uncertainty u, [mg/l]	0,54	Average mass	concentration	1001,6	[mg/l]				
	U (k=2), [mg/l]	1,07		U (k=2)	1,1	[mg/l]				
				Validatio	on parameters					
Re	peatability of the method	0),12%	Ref. mas	s conecntration		1000,0		[mg/l]	
	Recovery (rel.)	10	0,16%	l	J, k=2		2,0		[mg/l]	
R	ecovery uncertainty (rel.)	0),11%		u		1,0		[mg/l]	
	γ(average) - γ(ref.)		1,6		[mg/l]		Metrological co		mg/l]	
	u (γ(average) - γ(ref.))		1,13		[mg/l]	γ(ave	γ(average) - γ(ref.)		U (γ(average) - γ(ref.))	
	U (γ(average) - γ(ref.))		2,27		[mg/l]		1,6		2,3	

Bismut standard solution in 2% (v/v) nitric acid

Bismut standard solution in 2% (v/v) nitric acid	Lead for the standard solution preparation weight	Lead for the standard solution preparation purity	Lead molar mass	Volume of the lead standard solution	Volume of the lead standard for the EDTA concentration determination	Volume of EDTA volumetric solution for its concentration determination	Repeatability of the EDTA concentration determination	Volume of the sample analysed (bismut stdandard solution)	Volume of EDTA volumetric solution during the titration	Bismut molar mass	Repeatability of the analysis	
	a [g]	P [1]	b [g/mol]	c [ml]	d [ml]	e [ml]	repeatability EDTA	f [ml]	g [ml]	h [g/mol]	repeatability	
Value	2,07888	1	207,200	1000	30,02	30,18	1	49,96	23,94	208,980400	1	
Uncertainty	0,00007	0,000006	0,058	0,1915	0,0022	0,0062	0,000271	0,0017	0,0062	0,000006	0,000278	
а	2,07895	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	
Р	1	1,000006	1	1	1	1	1	1	1	1	1	
b	207,2	207,2	207,258	207,2	207,2	207,2	207,2	207,2	207,2	207,2	207,2	
с	1000	1000	1000	1000,1915	1000	1000	1000	1000	1000	1000	1000	
d	30,02	30,02	30,02	30,02	30,0222	30,02	30,02	30,02	30,02	30,02	30,02	
е	30,18	30,18	30,18	30,18	30,18	30,1862	30,18	30,18	30,18	30,18	30,18	
repeatability EDTA	1	1	1	1	1	1	1,000271	1	1	1	1	
f	49,96	49,96	49,96	49,96	49,96	49,96	49,96	49,9617	49,96	49,96	49,96	
g	23,94	23,94	23,94	23,94	23,94	23,94	23,94	23,94	23,9462	23,94	23,94	
h	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,980406	208,9804	
repeatability	1	1	1	1	1	1	1	1	1	1	1,000278	
Mass conc. (γ(u)), [mg/l]	999,43	999,40	999,12	999,21	999,47	999,19	999,67	999,36	999,66	999,40	<mark>999,68</mark>	
γ(average) - γ(u), [mg/l]	-0,0337	-0,0058	0,2784	0,1913	-0,0716	0,2053	-0,2705	0,0334	-0,2588	0,0000	-0,2783	
(γ(av.) - γ(u))2, [mg/l]2	0,0011	0,0000	0,0775	0,0366	0,0051	0,0421	0,0732	0,0011	0,0670	0,0000	0,0775	
Contribution to the total u	0,3%	0,0%	20,3%	9,6%	1,3%	11,1%	19,2%	0,3%	17,6%	0,0%	20,3%	
Σ(γ(av.) - γ(u))2, [mg/l]2	0,381										100,00%	
Total uncertainty u, [mg/l]	0,6	Average mass	concentration	999,4	[mg/l]							
U (k=2), [mg/l]	1,2		U (k=2)	1,2	[mg/l]							
Repeatability of the	e method	0,0	09%	Ref. n	nass conecnt	tration	1000),0		[mg/l]		
Recovery (re	el.)	99,	,94%		U (k=2)		2,0)		[mg/l]		
Recovery uncertai	nty (rel.)	0,	12%		u		1,0)		[mg/l]		
γ(average) - γ	(ref.)	0),6		[mg/l]		N	letrological c	ompatibility [ompatibility [mg/l]		
u (γ(average) - γ	γ(ref.))	1,	175		[mg/l]		γ(average) - γ(ref.)		U (γ(a	U (γ(average) - γ(ref.))		
U (γ(average) -	γ(ref.))	2,	351		[mg/l]		0,0	6		2,4		

Chelatometric (complexometric) determinations

EDTA Ethylenediaminetetraacetic acid

(a)

Chelatometric (complexometric) determinations Huge amount of single element calibration solutions

No.	Analyte	$\begin{array}{l} \gamma(ref) \pm U \\ [mg.l^{-1}] \end{array}$	$\begin{array}{c} \gamma(det) \pm U \\ [mg.l^{-1}] \end{array}$	No.	Analyte	$\gamma(ref) \pm U$ [mg.1 ⁻¹]	$\begin{array}{c} \gamma(det) \pm U \\ [mg.l^{-1}] \end{array}$
1	Al	1000.0 ± 2.0	998.4 ± 2.0	30	Mg	1000.0 ± 2.0	1001.3 ± 1.4
2	Al	10005.0 ± 20.0	10014.8 ± 20.2	31	Mg	10003.0 ± 20.0	10005.1 ± 15.0
7	Bi	1000.0 ± 2.0	999.4 ± 1.2	32	Mn	1000.0 ± 2.0	999.0 ± 1.1
8	Bi	10000.0 ± 20.0	10016.1 ± 14.6	37	Ni	1000.0 ± 2.0	1001.0 ± 1.0
10	Ca	1000.0 ± 2.0	999.4 ± 1.2	40	Pb	1000.0 ± 2.0	1000.1 ± 1.3
11	Ca	$10.025 \pm 0.017 \ast$	$10.023 \pm 0.014 *$	45	Sc	1000.0 ± 2.0	999.3 ± 1.0
12	Cd	1000.0 ± 2.0	998.6 ± 1.0	46	Sn	1000.0 ± 2.0	998.2 ± 1.4
13	Cd	$10.005 \pm 0.019 *$	$9.998 \pm 0.013 *$	47	Sn	1000.0 ± 2.0	1001.8 ± 1.9
16	Со	1000.0 ± 2.0	1000.1 ± 0.9	52	T1	1000.0 ± 2.0	998.4 ± 1.2
18	Cu	1000.0 ± 2.0	999.1 ± 1.1	53	V	1000.0 ± 2.0	1000.8 ± 5.4
19	Cu	10012.0 ± 20.0	10014.1 ± 12.0	56	Y	1000.0 ± 2.0	1001.2 ± 1.0
20	F-	1000.0 ± 2.0	1001.1 ± 2.4	57	Zn	1000.0 ± 2.0	1001.0 ± 1.1
21	F-	1001.0 ± 2.0	1000.6 ± 2.1	58	Zn	10013.0 ± 20.0	9998.5 ± 11.4
22	Fe	1000.0 ± 2.0	1000.5 ± 1.8	59	Zr	1000.0 ± 2.0	1001.1 ± 1.5
24	Ga	1000.0 ± 2.0	999.2 ± 1.9	60	Zr	1000.0 ± 2.0	999.6 ± 1.5
25	Hf	10000.0 ± 20.0	10023.1 ± 15.2	61	Zr	10000.0 ± 30.0	10014.0 ± 14.4
26	In	1000.0 ± 2.0	998.1 ± 1.3	chela	tometric (co	mplexometric) deter	mination; *[mg/g]

Other titrimetric determinations Alkalimetry, argentometry, manganometry, bromatometry

No	Analyte	$\gamma(ref) \pm U$ [mg.l ⁻¹]	$\gamma(det) \pm U$ [mg.l ⁻¹]	RSD [%]	R ± u(R) [%]	$\Delta < U(\Delta)$ [mg.l ⁻¹]
4	В	1000.0 ± 2.0	1000.8 ± 1.1	0.05	100.08 ± 0.11	0.8 < 2.3
5	В	1000.0 ± 2.0	998.1 ± 1.2	0.08	99.81 ± 0.12	1.9 < 2.4
> C(C) 2 $ $ > C(C)	$+ H_3B$	$O_3 = \begin{bmatrix} >C - O \\ \\ >C - O \end{bmatrix}$	pK _A (free boric a pK _A (boric acid-1	-		
No	Analyte	$\gamma(ref) \pm U$ [mg.l ⁻¹]	$\gamma(det) \pm U$ [mg.1 ⁻¹]	RSD [%]	$\begin{array}{c} R \pm u(R) \\ [\%] \end{array}$	$\Delta < U(\Delta)$ [mg.l ⁻¹]
9	Br	1000.0 ± 2.0	1001.9 ± 1.1	0.09	100.19 ± 0.11	1.9 < 2.3
14	Cl-	1000.0 ± 2.0	998.2 ± 1.1	0.07	99.82 ± 0.12	1.8 < 2.3
15	Cl-	1000.0 ± 5.0	1001.0 ± 1.4	0.08	100.10 ± 0.26	1.0 < 5.2
No	Analyte	$\gamma(ref) \pm U$ [mg.l ⁻¹]	$\gamma(det) \pm U$ [mg.l ⁻¹]	RSD [%]	$\begin{array}{c} R \pm u(R) \\ [\%] \end{array}$	$\begin{array}{c} \Delta < U(\Delta) \\ [mg.l^{-1}] \end{array}$
23	Fe	1000.0 ± 2.0	998.4 ± 0.9	0.07	99.84 ± 0.11	1.6 < 2.2
44	Sb	1000.0 ± 2.0	1001.6 ± 1.1	0.12	100.16 ± 0.11	1.6 < 2.3

Alkali metals calibration solutions Determination in the form of alkali metal sulfates

No	Analyte	$\gamma(\text{ref}) \pm \text{U}$ [mg.l ⁻¹]	$\gamma(det) \pm U$ [mg.l ⁻¹]	RSD [%]	$\begin{array}{c} R \pm u(R) \\ [\%] \end{array}$	$\Delta < U(\Delta)$ [mg.l ⁻¹]
29	Li	10000.0 ± 20.0	9980.9 ± 7.7	0.09	99.81 ± 0.11	19.1 < 21.4
33	Na	10000.0 ± 20.0	9991.6 ± 9.4	0.13	99.92 ± 0.11	8.4 < 22.1
34	Na	10000.0 ± 20.0	9996.6 ± 9.2	0.12	99.97 ± 0.11	3.4 < 22.0
27	K	10000.0 ± 20.0	9999.6 ± 19.3	0.29	100.00 ± 0.14	0.4 < 27.8
28	K	10000.0 ± 20.0	10012.9 ± 7.8	0.06	100.13 ± 0.11	12.9 < 21.5
42	Rb	10000.0 ± 20.0	9985.6 ± 12.1	0.10	99.86 ± 0.12	14.4 < 23.4
17	Cs	10000.0 ± 20.0	10003.9 ± 18.5	0.24	100.04 ± 0.14	3.9 < 27.2

Gold in 5% (v/v) hydrochloric acid solution Determination using hydroquinone reduction

No	Analyte	$\gamma(ref) \pm U$	$\gamma(det) \pm U$	RSD	$R \pm u(R)$	$\Delta < U(\Delta)$
		[mg.l ⁻¹]	[mg.l ⁻¹]	[%]	[%]	[mg.1 ⁻¹]
3	Au	1000.0 ± 2.0	999.4 ± 1.9	0.16	99.94 ± 0.14	0.6 < 2.8

Baryum in 2% (v/v) nitric acid solution Determination in the form of baryum chromate

No	Analyte	$\gamma(ref) \pm U$	$\gamma(det) \pm U$	RSD	$R \pm u(R)$	$\Delta < U(\Delta)$
		[mg.l ⁻¹]	[mg.l ⁻¹]	[%]	[%]	[mg.1 ⁻¹]
6	Ba	1000.0 ± 2.0	998.5 ± 0.9	0.07	99.85 ± 0.11	1.5 < 2.2

Niobium in 1% (v/v) HF and 5% HNO_3 (v/v) solution Determination using cupferron as precipitating agent

No	Analyte	$\gamma(\text{ref}) \pm \text{U}$ [mg.l ⁻¹]	$\gamma(\text{det}) \pm \text{U}$ [mg.l ⁻¹]	RSD [%]	$\begin{array}{c} R \pm u(R) \\ [\%] \end{array}$	$\Delta < U(\Delta)$ [mg.l ⁻¹]
35	Nb	1000.0 ± 2.0	1000.8 ± 2.1	0.08	100.08 ± 0.14	0.8 < 2.9

Ni in 2% (v/v) HNO_3 and Pd in 5% (v/v) HCl solution Determination using dimethylglyoxime as precipitant

No	Analyte	$\gamma(\text{ref}) \pm \text{U}$ [mg.l ⁻¹]	$\gamma(\text{det}) \pm \text{U}$ [mg.l ⁻¹]	RSD [%]	$R \pm u(R)$ [%]	$\Delta < U(\Delta)$ [mg.l ⁻¹]
		[iiig.i]	[IIIg.I]	[۷ ا	[/0]	[ing.i]
36	Ni	1000.0 ± 2.0	1000.9 ± 0.9	0.08	100.09 ± 0.11	0.9 < 2.2
38	Ni	1000.0 ± 2.0	1000.8 ± 0.6	0.02	100.08 ± 0.10	0.8 < 2.1
41	Pd	1000.0 ± 2.0	998.7 ± 1.9	0.19	99.87 ± 0.14	1.3 < 2.7

Nitrate, perrhenate and wolframate in water solution Determination using nitrone as precipitating agent

No	Analyte	$\gamma(\text{ref}) \pm U$	$\gamma(det) \pm U$	RSD	$R \pm u(R)$	$\Delta < U(\Delta)$
		$[mg.l^{-1}]$	$[mg.l^{-1}]$	[%]	[%]	$[mg.l^{-1}]$
39	NO ₃ -	1000.0 ± 2.0	1001.1 ± 1.4	0.19	100.11 ± 0.12	1.1 < 2.4
43	Re	1000.0 ± 2.0	999.3 ± 1.4	0.14	99.93 ± 0.12	0.7 < 2.5
54	W	1000.0 ± 2.0	999.0 ± 2.5	0.14	99.90 ± 0.16	1.0 < 3.2
55	W	10000.0 ± 20.0	10007.5 ± 38.3	0.34	100.07 ± 0.22	7.5 < 43.2

Ta and Ti in 1% (v/v) HF and 5% HNO_3 (v/v) solution Determination using ammonia solution hydrolysis

No	Analyte	$\gamma(ref) \pm U$	$\gamma(det) \pm U$	RSD	$R \pm u(R)$	$\Delta < U(\Delta)$
		[mg.1 ⁻¹]	[mg.1 ⁻¹]	[%]	[%]	[mg.1 ⁻¹]
48	Ta	1000.0 ± 2.0	998.5 ± 1.5	0.14	99.85 ± 0.13	1.5 < 2.5
49	Ta	10000.0 ± 20.0	10002.3 ± 25.3	0.09	100.02 ± 0.16	2.3 < 32.3
50	Ti	1000.0 ± 2.0	1000.8 ± 2.1	0.17	100.08 ± 0.15	0.8 < 2.9
51	Ti	10010.0 ± 20.0	10016.5 ± 26.2	0.24	100.07 ± 0.16	6.5 < 33.0

Standard calibration solutions analysed

Analytika, spol. s r.o., Czech Republic

National Institute of Standards and Technology, USA

Fluka, Sigma Aldrich Production GmbH, Switzerland

Alfa Aesar GmbH, Germany

Ultra Scientific, USA

Conclusion

primary methods (gravimetry and titrimetry) are capable for the determination of a nominal value of the analyte mass concentration with acceptable uncertainty below 0,2% (rel.)

 metrological compatibility between analyte mass concentration value found and certified was for more than 60 solutions fulfilled

Literature

- 1. Kvalimetrie 9, Eurachem-ČR 2001, ISBN 80-901868-7-4
- 2. Kvalimetrie 11, Eurachem-ČR 2001, ISBN 80-901868-9-0
- 3. Kvalimetrie 16, Eurachem-ČR 2009, ISBN 80-86322-04-1
- 4. QUAM, Third Edition, Discussion Draft 1, Eurachem/CITAC Guide (May 2011).
- 5. Terminology in Analytical Measurement, Introduction to VIM3, Eurachem (2011)
- 6. Appl. Note 1, Comparison of a measur. result with the certified value, ERM (2005)
- 7. Plzák Z., Porovnání výsledků s certifikovanou hodnotou CRM, Eurachem-ČR (2007)
- 8. Vogel A. I., Vogel's Textbook of Quantitative Chemical Analysis, 5th edition (1989)
- 9. Přibil R.: Komplexometrie (1977), SNTL, Praha
- 10. Jílek A., Koťa J. (1951) Vážková analysa a elaktroanalysa, díl II, TVV, Praha
- 11. Jílek A., Koťa J. (1956) Vážková analysa a elaktroanalysa, díl III, SNTL, Praha
- 12. Mestek O., Suchánek M., Hrubý V. (1999): Accred Qual Assur 4: 307-312.
- 13. Mestek O., Hrubý V., Suchánek M. (2000): Chem. Listy 94, 136-141.
- Mestek O., Mališová K., Koplík R., Polák J., Suchánek M.: Accred Qual Assur (2008) 13: 305–310

Acknowledgement

Many thanks to all colleagues

from Analytika, spol. s r.o.,

namely to Dr. Václav Sychra, Ph.D.

for valuable comments and cooperation

!! Thank you for your attention **!!**