Analytika ${ }^{\circledR}$ spol. s r.o., Ke Klíčovu 2a/816, 19000 Praha 9

Primary methods Determination of the analyte mass concentration

in single element water calibration solutions

Martin Vlasák, Zuzana Luxemburková, Václav Sychra www.analytika.net; sales@analytika.net

Gravimetric preparation of water calibration solutions and analyte mass concentration determination

$\gamma(\mathrm{A}) \pm \mathrm{U}$

Sodium calibration solution in 2\% (v/v) nitric acid (Kragten spreadsheet)

Sodium std. solution in 2\% nitric acid	Average sample weight	Volume of the sample analysed (std. solution)	Gravimetric factor	Repeatability of the analysis
	a [g]	b [ml]	c [1]	repeatability [1]
Value	0,30913	10,01	0,3237035	1
Uncertainty	0,00007	0,00087	0,0000068	0,000388
a [g]	0,30920	0,30913	0,30913	0,30913
b [ml]	10,01	10,01087	10,01	10,01
c [1]	0,3237035	0,3237035	0,3237103	0,3237035
repeatability [1]	1	1	1	1,000388
Mass conc. ($\mathrm{y}(\mathrm{u})$), [mg/l]	9998,8	9995,7	9996,8	10000,4
Y (average) - $\mathrm{\gamma}$ (u), [mg/l]	-2,264	0,869	-0,209	-3,882
($\mathrm{y}(\mathrm{av})-.\mathrm{v}(\mathrm{u})$)2, [mg/l] 2	5,124	0,755	0,044	15,073
Contribution to the total u	24,4\%	3,6\%	0,2\%	71,8\%
$\Sigma(\mathrm{y}(\mathrm{av} .)-\mathrm{v}(\mathrm{u}))^{2},[\mathrm{mg} / \mathrm{l}] 2$	20,99537			100,00\%
Total uncertainty $\mathrm{u},[\mathrm{mg} / \mathrm{l}]$	4,6	Average mass concentration	9996,6	[mg/l]
Expanded comb. U, [mg/l]	9,2	$\mathrm{U}, \mathrm{k}=2$	9,2	[mg/l]
Repeatability of the method	0,12\%	Ref. mass conecntration	10000,0	[mg/l]
Recovery (rel.)	99,97\%	$\mathrm{U}, \mathrm{k}=2$	20,0	[mg/l]
Recovery uncertainty (rel.)	0,11\%	u	10,0	[mg/l]
γ (average) - $\mathrm{\chi}$ (ref.)	3,4	[mg/l]	Metrological compatibility [mg/l]	
$\mathrm{u}(\mathrm{y}$ (average) - y (ref.))	11,0	[mg/l]	γ (average) - $\mathrm{\gamma}$ (ref.)	U (Y (average) - $\mathrm{\gamma}$ (ref.) $)$
U (v (average) - y (ref.))	22,0	[mg/l]	3,4	22,0

Antimony calibration solution in $1 \% \mathrm{HF}+5 \% \mathrm{HNO}_{3}$ (v/v)

Antimony std. solution in 1\% hydrofluoric $+5 \%$ nitric acid	Weight of potassium bromate for the volumetric solution	Purity of potassium bromate for the vol. solution preparation	Molar mass of potassium bromate	Volume of potassium bromate volumetric solution	Volume of the sample analysed (antimony std. solution)	Volume of potassium bromate vol. solution during the titration	Molar mass of antimony	Repeatability of the analysis
	a [g]	P [1]	b [g/mol]	c [mI]	d [mI]	e [mI]	f [g/mol]	repeatability
Value	1,66992	1	167,0005	1000	99,94	27,41	121,76	1
Uncertainty	0,00007	0,000115	0,000779	0,1915	0,0112	0,0062	0,000577	0,000413
a	1,66999	1,66992	1,66992	1,66992	1,66992	1,66992	1,66992	1,66992
P	1	1,000115	1	1	1	1	1	1
b	167,0005	167,0005	167,001279	167,0005	167,0005	167,0005	167,0005	167,0005
c	1000	1000	1000	1000,1915	1000	1000	1000	1000
d	99,94	99,94	99,94	99,94	99,9512	99,94	99,94	99,94
e	27,41	27,41	27,41	27,41	27,41	27,41245	27,41	27,41
f	121,76	121,76	121,76	121,76	121,76	121,76	121,760577	121,76
repeatability	1	1	1	1	1	1	1	1,000413
Mass conc. ($\mathrm{Y}(\mathrm{u}$)), [$\mathrm{mg} / \mathrm{l}]$	1001,69	1001,76	1001,64	1001,45	1001,53	1001,87	1001,65	1002,06
γ (average) - $\mathrm{\gamma}(\mathrm{u}),[\mathrm{mg} / \mathrm{l}]$	-0,042	-0,116	0,005	0,192	0,112	-0,227	-0,005	-0,414
($\mathrm{Y}(\mathrm{av})-.\mathrm{\gamma}(\mathrm{u})$)2, [mg/l] 2	0,002	0,013	0,000	0,037	0,013	0,051	0,000	0,171
Contribution to the total u	0,6\%	4,7\%	0,0\%	12,8\%	4,4\%	17,9\%	0,0\%	59,7\%
$\Sigma(\mathrm{y}(\mathrm{av})-.\mathrm{y}(\mathrm{u})$)2, [mg/l] 2	0,287							100,0\%
Total uncertainty u, [mg/l]	0,54	Average mas	concentration	1001,6	[mg/l]			
$\mathrm{U}(\mathrm{k}=2),[\mathrm{mg} / \mathrm{l}]$	1,07		$\mathrm{U}(\mathrm{k}=2)$	1,1	[mg/l]			

Validation parameters

Repeatability of the method	0,12\%	Ref. mass conecntration	1000,0	[mg/l]
Recovery (rel.)	100,16\%	$\mathrm{U}, \mathrm{k}=2$	2,0	[mg/l]
Recovery uncertainty (rel.)	0,11\%	u	1,0	[mg/l]
γ (average) - $\mathrm{\gamma}$ (ref.)	1,6	[mg/l]	Metrological compatibility [mg/l]	
$\mathrm{u}(\mathrm{\gamma}$ (average) - V (ref.))	1,13	[mg/l]	γ (average) - Y (ref.)	U ($\mathrm{\gamma}$ (average) - V (ref.))
U (Y (average) - $\mathrm{Y}($ ref. $)$)	2,27	[mg/l]	1,6	2,3

Bismut standard solution in 2\% (v/v) nitric acid

Bismut standard solution in 2\% (v/v) nitric acid	Lead for the standard solution preparation weight	Lead for the standard solution preparation purity	Lead molar mass	Volume of the lead standard solution	Volume of the lead standard for the EDTA concentration determination	Volume of EDTA volumetric solution for its concentration determination	Repeatability of the EDTA concentration determination	Volume of the sample analysed (bismut stdandard solution)	Volume of EDTA volumetric solution during the titration	Bismut molar mass	Repeatability of the analysis
	a [g]	P [1]	b [g/mol]	c [ml]	d [mI]	e [ml]	repeatability EDTA	f [ml]	g [ml$]$	h [g/mol]	repeatability
Value	2,07888	1	207,200	1000	30,02	30,18	1	49,96	23,94	208,980400	1
Uncertainty	0,00007	0,000006	0,058	0,1915	0,0022	0,0062	0,000271	0,0017	0,0062	0,000006	0,000278
a	2,07895	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888	2,07888
P	1	1,000006	1	1	1	1	1	1	1	1	1
b	207,2	207,2	207,258	207,2	207,2	207,2	207,2	207,2	207,2	207,2	207,2
c	1000	1000	1000	1000,1915	1000	1000	1000	1000	1000	1000	1000
d	30,02	30,02	30,02	30,02	30,0222	30,02	30,02	30,02	30,02	30,02	30,02
e	30,18	30,18	30,18	30,18	30,18	30,1862	30,18	30,18	30,18	30,18	30,18
repeatability EDTA	1	1	1	1	1	1	1,000271	1	1	1	1
f	49,96	49,96	49,96	49,96	49,96	49,96	49,96	49,9617	49,96	49,96	49,96
g	23,94	23,94	23,94	23,94	23,94	23,94	23,94	23,94	23,9462	23,94	23,94
h	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,9804	208,980406	208,9804
repeatability	1	1	1	1	1	1	1	1	1	1	1,000278
Mass conc. ($\mathrm{Y}(\mathrm{u})$), [$\mathrm{mg} / \mathrm{l}]$	999,43	999,40	999,12	999,21	999,47	999,19	999,67	999,36	999,66	999,40	999,68
Y (average) - $\mathrm{Y}(\mathrm{u}),[\mathrm{mg} / \mathrm{l}]$	-0,0337	-0,0058	0,2784	0,1913	-0,0716	0,2053	-0,2705	0,0334	-0,2588	0,0000	-0,2783
$(\mathrm{Y}(\mathrm{av})-.\mathrm{y}(\mathrm{u})$)2, [mg/l] 2	0,0011	0,0000	0,0775	0,0366	0,0051	0,0421	0,0732	0,0011	0,0670	0,0000	0,0775
Contribution to the total u	0,3\%	0,0\%	20,3\%	9,6\%	1,3\%	11,1\%	19,2\%	0,3\%	17,6\%	0,0\%	20,3\%
$\Sigma(\mathrm{y}(\mathrm{av} .)-\mathrm{y}(\mathrm{u}))^{2},[\mathrm{mg} / \mathrm{l}] 2$	0,381										100,00\%
Total uncertainty u, [mg/l]	0,6	Average mass	concentration	999,4	[mg/l]						
$\mathrm{U}(\mathrm{k}=2),[\mathrm{mg} / \mathrm{l}]$	1,2		$\mathrm{U}(\mathrm{k}=2)$	1,2	[mg/l]						
Repeatability of the method		0,09\%		Ref. mass conecntration			1000,0		[mg/l]		
Recovery (rel.)		99,94\%		$\mathrm{U}(\mathrm{k}=2)$			2,0		[$\mathrm{mg} / \mathrm{l}]$		
Recovery uncertainty (rel.)		0,12\%		u			1,0		[mg/l]		
$\text { Y(average) - } \mathrm{Y} \text { (ref.) }$		0,6		[mg/l]			Metrological compatibility [mg/l]				
$\mathrm{u}(\mathrm{V}$ (average) - V (ref. $)$)		1,175		[$\mathrm{mg} / \mathrm{l}]$			γ (average) - V (ref.)		$\mathrm{U}(\mathrm{\gamma}$ (average) - Y (ref. $)$)		
U (Y (average) - Y (ref. $)$)		2,351		[mg/l]			0,6		2,4		

Chelatometric (complexometric) determinations

(a) Structure of EDTA and (b) its metal complex

Chelatometric (complexometric) determinations Huge amount of single element calibration solutions

No.	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	No.	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	
1	Al	1000.0 ± 2.0	9998.4 ± 2.0	30	Mg	1000.0 ± 2.0	1001.3 ± 1.4	
2	Al	10005.0 ± 20.0	10014.8 ± 20.2	31	Mg	10003.0 ± 20.0	10005.1 ± 15.0	
7	Bi	1000.0 ± 2.0	999.4 ± 1.2	32	Mn	1000.0 ± 2.0	999.0 ± 1.1	
8	Bi	10000.0 ± 20.0	10016.1 ± 14.6	37	Ni	1000.0 ± 2.0	1001.0 ± 1.0	
10	Ca	1000.0 ± 2.0	999.4 ± 1.2	40	Pb	1000.0 ± 2.0	1000.1 ± 1.3	
11	Ca	$10.025 \pm 0.017^{*}$	$10.023 \pm 0.014^{*}$	45	Sc	1000.0 ± 2.0	999.3 ± 1.0	
12	Cd	1000.0 ± 2.0	998.6 ± 1.0	46	Sn	1000.0 ± 2.0	998.2 ± 1.4	
13	Cd	$10.005 \pm 0.019^{*}$	$9.998 \pm 0.013^{*}$	47	Sn	1000.0 ± 2.0	1001.8 ± 1.9	
16	Co	1000.0 ± 2.0	1000.1 ± 0.9	52	Tl	1000.0 ± 2.0	998.4 ± 1.2	
18	Cu	1000.0 ± 2.0	999.1 ± 1.1	53	V	1000.0 ± 2.0	1000.8 ± 5.4	
19	Cu	10012.0 ± 20.0	10014.1 ± 12.0	56	Y	1000.0 ± 2.0	1001.2 ± 1.0	
20	$\mathrm{~F}-$	1000.0 ± 2.0	1001.1 ± 2.4	57	Zn	1000.0 ± 2.0	1001.0 ± 1.1	
21	F	1001.0 ± 2.0	1000.6 ± 2.1	58	Zn	10013.0 ± 20.0	9998.5 ± 11.4	
22	Fe	1000.0 ± 2.0	1000.5 ± 1.8	59	Zr	1000.0 ± 2.0	1001.1 ± 1.5	
24	Ga	1000.0 ± 2.0	999.2 ± 1.9	60	Zr	1000.0 ± 2.0	999.6 ± 1.5	
25	Hf	10000.0 ± 20.0	10023.1 ± 15.2	61	Zr	10000.0 ± 30.0	10014.0 ± 14.4	
26	In	1000.0 ± 2.0	998.1 ± 1.3	$\mathrm{chelatometric\mid}$ (complexometric) determination; ${ }^{-1}[\mathrm{mg} / \mathrm{g}]$				

Other titrimetric determinations

Alkalimetry, argentometry, manganometry, bromatometry

No	Analyte	$\gamma($ ref $) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
4	B	1000.0 ± 2.0	1000.8 ± 1.1	0.05	100.08 ± 0.11	$0.8<2.3$
5	B	1000.0 ± 2.0	998.1 ± 1.2	0.08	99.81 ± 0.12	$1.9<2.4$

No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
9	Br^{-}	1000.0 ± 2.0	1001.9 ± 1.1	0.09	100.19 ± 0.11	$1.9<2.3$
14	Cl^{-}	1000.0 ± 2.0	998.2 ± 1.1	0.07	99.82 ± 0.12	$1.8<2.3$
15	Cl^{-}	1000.0 ± 5.0	1001.0 ± 1.4	0.08	100.10 ± 0.26	$1.0<5.2$
No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
23	Fe	1000.0 ± 2.0	998.4 ± 0.9	0.07	99.84 ± 0.11	$1.6<2.2$
44	Sb	1000.0 ± 2.0	1001.6 ± 1.1	0.12	100.16 ± 0.11	$1.6<2.3$

Alkali metals calibration solutions Determination in the form of alkali metal sulfates

No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
29	Li	10000.0 ± 20.0	9980.9 ± 7.7	0.09	99.81 ± 0.11	$19.1<21.4$
33	Na	10000.0 ± 20.0	9991.6 ± 9.4	0.13	99.92 ± 0.11	$8.4<22.1$
34	Na	10000.0 ± 20.0	9996.6 ± 9.2	0.12	99.97 ± 0.11	$3.4<22.0$
27	K	10000.0 ± 20.0	9999.6 ± 19.3	0.29	100.00 ± 0.14	$0.4<27.8$
28	K	10000.0 ± 20.0	10012.9 ± 7.8	0.06	100.13 ± 0.11	$12.9<21.5$
42	Rb	10000.0 ± 20.0	9985.6 ± 12.1	0.10	99.86 ± 0.12	$14.4<23.4$
17	Cs	10000.0 ± 20.0	10003.9 ± 18.5	0.24	100.04 ± 0.14	$3.9<27.2$

Gold in 5\% (v/v) hydrochloric acid solution Determination using hydroquinone reduction

No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma($ det $) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
3	Au	1000.0 ± 2.0	999.4 ± 1.9	0.16	99.94 ± 0.14	$0.6<2.8$

Baryum in 2\% (v/v) nitric acid solution Determination in the form of baryum chromate

No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
6	Ba	1000.0 ± 2.0	998.5 ± 0.9	0.07	99.85 ± 0.11	$1.5<2.2$

Niobium in 1% (v/v) HF and 5\% $\mathrm{HNO}_{3}(\mathrm{v} / \mathrm{v})$ solution Determination using cupferron as precipitating agent

No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
35	Nb	1000.0 ± 2.0	1000.8 ± 2.1	0.08	100.08 ± 0.14	$0.8<2.9$

Ni in $2 \%(\mathrm{v} / \mathrm{v}) \mathrm{HNO}_{3}$ and Pd in $5 \% ~(\mathrm{v} / \mathrm{v}) \mathrm{HCl}$ solution Determination using dimethylglyoxime as precipitant

No	Analyte	$\gamma(\mathrm{ref}) \pm \mathrm{U}$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
36	Ni	1000.0 ± 2.0	1000.9 ± 0.9	0.08	100.09 ± 0.11	$0.9<2.2$
38	Ni	1000.0 ± 2.0	1000.8 ± 0.6	0.02	100.08 ± 0.10	$0.8<2.1$
41	Pd	1000.0 ± 2.0	998.7 ± 1.9	0.19	99.87 ± 0.14	$1.3<2.7$

Nitrate, perrhenate and wolframate in water solution Determination using nitrone as precipitating agent

No	Analyte	$\gamma($ ref $) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	$\gamma($ det $) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
39	$\mathrm{NO}_{3}{ }^{-}$	1000.0 ± 2.0	1001.1 ± 1.4	0.19	100.11 ± 0.12	$1.1<2.4$
43	Re	1000.0 ± 2.0	999.3 ± 1.4	0.14	99.93 ± 0.12	$0.7<2.5$
54	W	1000.0 ± 2.0	999.0 ± 2.5	0.14	99.90 ± 0.16	$1.0<3.2$
55	W	10000.0 ± 20.0	10007.5 ± 38.3	0.34	100.07 ± 0.22	$7.5<43.2$

Ta and Ti in 1\% (v/v) HF and 5\% HNO_{3} (v/v) solution Determination using ammonia solution hydrolysis

No	Analyte	$\gamma($ ref $) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	$\gamma(\mathrm{det}) \pm \mathrm{U}$ $\left[\mathrm{mg}. . \mathrm{l}^{-1}\right]$	RSD $[\%]$	$\mathrm{R} \pm \mathrm{u}(\mathrm{R})$ $[\%]$	$\Delta<\mathrm{U}(\Delta)$ $\left[\mathrm{mg} . \mathrm{l}^{-1}\right]$
48	Ta	1000.0 ± 2.0	998.5 ± 1.5	0.14	99.85 ± 0.13	$1.5<2.5$
49	Ta	10000.0 ± 20.0	10002.3 ± 25.3	0.09	100.02 ± 0.16	$2.3<32.3$
50	Ti	1000.0 ± 2.0	1000.8 ± 2.1	0.17	100.08 ± 0.15	$0.8<2.9$
51	Ti	10010.0 ± 20.0	10016.5 ± 26.2	0.24	100.07 ± 0.16	$6.5<33.0$

Standard calibration solutions analysed

Analytika, spol. s r.o., Czech Republic

National Institute of Standards and Technology, USA
Fluka, Sigma Aldrich Production GmbH, Switzerland
Alfa Aesar GmbH, Germany
Ultra Scientific, USA

Conclusion

- primary methods (gravimetry and titrimetry) are capable for the determination of a nominal value of the analyte mass concentration with acceptable uncertainty below $0,2 \%$ (rel.)
- metrological compatibility between analyte mass concentration value found and certified was for more than 60 solutions fulfilled

Literature

1. Kvalimetrie 9, Eurachem-ČR 2001, ISBN 80-901868-7-4
2. Kvalimetrie 11, Eurachem-ČR 2001, ISBN 80-901868-9-0
3. Kvalimetrie 16, Eurachem-ČR 2009, ISBN 80-86322-04-1
4. QUAM, Third Edition, Discussion Draft 1, Eurachem/CITAC Guide (May 2011).
5. Terminology in Analytical Measurement, Introduction to VIM3, Eurachem (2011)
6. Appl. Note 1, Comparison of a measur. result with the certified value, ERM (2005)
7. Plzák Z., Porovnání výsledků s certifikovanou hodnotou CRM, Eurachem-ČR (2007)
8. Vogel A. I., Vogel's Textbook of Quantitative Chemical Analysis, 5th edition (1989)
9. Přibil R.: Komplexometrie (1977), SNTL, Praha
10. Jílek A., Koł’a J. (1951) Vážková analysa a elaktroanalysa, díl II, TVV, Praha
11. Jílek A., Kota J. (1956) Vážková analysa a elaktroanalysa, díl III, SNTL, Praha
12. Mestek O., Suchánek M., Hrubý V. (1999): Accred Qual Assur 4: 307-312.
13. Mestek O., Hrubý V., Suchánek M. (2000): Chem. Listy 94, 136-141.
14. Mestek O., Mališová K., Koplík R., Polák J., Suchánek M.: Accred Qual Assur (2008) 13: 305-310

Acknowledgement

Many thanks to all colleagues

from Analytika, spol. s r.o.,
namely to Dr. Václav Sychra, Ph.D.
for valuable comments and cooperation
!! Thank you for your attention !!

